viernes, 25 de septiembre de 2015

                                                   HIDROSTÁTICA

La hidrostática es la rama de la mecánica de fluidos o de la hidráulica que estudia los fluidos incompresibles en estado de equilibrio; es decir, sin que existan fuerzas que alteren su movimiento o posición, en contraposición a la dinámica de fluidos.
Se denomina fluido a aquél medio continuo formado por alguna sustancia entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas restitutivas).
Los estados de la materia líquidogaseoso y plasma son fluidos, además de algunos sólidos que presentan características propias de éstos, un fenómeno conocido como solifluxión y que lo presentan, entre otros, los glaciares y el magma.
Las características principales que presenta todo fluido son:
  • Cohesión. Fuerza que mantiene unidas a las moléculas de una misma sustancia.
  • Tensión superficial. Fenómeno que se presenta debido a la atracción entre las moléculas de la superficie de un líquido.
  • Adherencia. Fuerza de atracción que se manifiesta entre las moléculas de dos sustancias diferentes en contacto.
  • Capilaridad. Se presenta cuando existe contacto entre un líquido y una pared sólida, debido al fenómeno de adherencia. En caso de ser la pared un recipiente o tubo muy delgado (denominados "capilares") este fenómeno se puede apreciar con mucha claridad.                                                     
\delta P = \rho g hEn términos de mecánica clásica, la presión de un fluido incompresible en estado de equilibrio se puede expresar mediante la siguiente fórmula; donde P es la presión, ρ es la densidad del fluido, g es la aceleración de la gravedad y h es la altura.



  ESTADO DE AGREGACIÓN DE LA MATERIA


En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólida,líquidagaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einstein,condensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quark-gluón.

Estado sólido

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:
  • Cohesión elevada;
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original;
  • A efectos prácticos son incompresibles,
  • Resistencia a la fragmentación;
  • Fluidez muy baja o nula;
  • Algunos de ellos se subliman.

Estado líquido

Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Movimiento energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.

Estado gaseoso
Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen definido. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases las fuerzas gravitatorias y de atracción entre partículas resultan insignificantes. Es considerado en algunos diccionarios como sinónimo de vapor, aunque no hay que confundir sus conceptos, ya que el término de vapor se refiere estrictamente para aquel gas que se puede condensar por presurización a temperatura constante. Los gases se expanden libremente hasta llenar el recipiente que los contiene, y su densidad es mucho menor que la de los líquidos y sólidos.
Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.
En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.
El estado gaseoso presenta las siguientes características:
  • Cohesión casi nula.
  • No tienen forma definida.
  • Su volumen es variable.

Estado plasmático

El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones ycationes (iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.


                    ELASTICIDAD

En física el término elasticidad designa la propiedad mecánica de ciertos materiales de sufrir deformaciones reversibles cuando se encuentran sujetos a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan.
La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (TE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores. La diferencia entre la TE y la MS es que la primera solo trata sólidos en que las deformaciones son termodinámicamente reversibles y en los que el estado tensiones \boldsymbol{\sigma} en un punto \mathbf{x} en un instante dado dependen solo de las deformaciones \boldsymbol{\varepsilon} en el mismo punto y no de las deformaciones anteriores (ni el valor de otras magnitudes en un instante anterior). Para un sólido elástico la ecuación constitutiva funcionalmente es de la forma:
\boldsymbol{\sigma}(\mathbf{x},t) = \hat{T}(\boldsymbol{\varepsilon}(\mathbf{x},t);\mathbf{x}), \qquad \qquad
\hat{T}:\mathcal{T}_2(\R^3) \times \R^3 \to \mathcal{T}_2(\R^3)


           PRENSA HIDRÁULICA

La prensa hidráulica es un mecanismo conformado por vasos comunicantes impulsados por pistones de diferentes áreas que, mediante una pequeña fuerza sobre el pistón de menor área, permite obtener una fuerza mayor en el pistón de mayor área. Los pistones son llamados pistones de agua, ya que son hidráulicos. Estos hacen funcionar conjuntamente a las prensas hidráulicas por medio de motores.

                        

                       EMPUJE

El empuje es una fuerza de reacción descrita cuantitativamente por la tercera ley de Newton. Cuando un sistema expele o acelera masa en una dirección (acción), la masa acelerada causará una fuerza igual en dirección contraria (reacción). Matemáticamente esto significa que la fuerza total experimentada por un sistema se acelera con una masa m que es igual y opuesto a m veces la aceleración a, experimentada por la masa:
                                                                  \sum^{}_{} \vec F = m \vec a

Ejemplos:

Un avión genera empuje hacia adelante cuando la hélice que gira, empuja el aire o expulsa los gases expansivos del reactor, hacia atrás del avión. El empuje hacia adelante es proporcional a la masa del aire multiplicada por la velocidad media del flujo de aire.
Similarmente, un barco genera empuje hacia adelante (o hacia atrás) cuando la hélice empuja agua hacia atrás (o hacia adelante). El empuje resultante empuja al barco en dirección contraria a la suma del cambio de momento del agua que fluye a través de la hélice.


No hay comentarios:

Publicar un comentario